Features of Classroom Culture that Support Equitable Sensemaking

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Who is engaged in (or excluded from) classroom activity?</td>
<td>• Equity means we focus on all students having opportunities to learn.</td>
<td>All students are engaged in the classroom activities.</td>
</tr>
<tr>
<td></td>
<td>• Equity means we ensure the participation of students from historically marginalized groups. Participation can include speaking, but also includes nodding, hand signals, body language and other physical expressions of engagement.</td>
<td></td>
</tr>
<tr>
<td>2. Who is treated as a “knower” in the classroom?</td>
<td>• The teacher is not the sole holder of knowledge in the classroom. Students lend valuable ideas to the discussion.</td>
<td>Students see themselves, one another and the teacher as the “knowers” in the classroom.</td>
</tr>
<tr>
<td></td>
<td>• The class respects all participants (students and teacher) and their ideas are seen as valuable, important, and helpful.</td>
<td>The teacher is not the sole holder of knowledge in the classroom. Students lend valuable ideas to the discussion.</td>
</tr>
<tr>
<td></td>
<td>• Student sensemaking is not straightforward and may not seem logical to others, but is logical, rich and meaningful to the student.</td>
<td>The class respects all participants (students and teacher) and their ideas are seen as valuable, important, and helpful.</td>
</tr>
<tr>
<td>3. What ways of knowing are privileged in the classroom?</td>
<td>• Learning is meaningful when home and school worlds connect.</td>
<td>Students and the teacher value the diverse resources one another bring to the social endeavor of science.</td>
</tr>
<tr>
<td></td>
<td>• All students bring valuable life experiences that are relevant to classroom learning, including their everyday language.</td>
<td>All students bring valuable life experiences that are relevant to classroom learning, including their everyday language.</td>
</tr>
<tr>
<td></td>
<td>• Encourage and value students use of resources to make sense of phenomena including non-academic language, gesturing, metaphors, storytelling and other modes of expression.</td>
<td>Encourage and value students use of resources to make sense of phenomena including non-academic language, gesturing, metaphors, storytelling and other modes of expression.</td>
</tr>
<tr>
<td>4. What science is practiced in the classroom?</td>
<td>• Science is not framed as the memorization of facts and definitions.</td>
<td>Instruction is organized around phenomena and design challenges to surface student ideas and questions to drive future instruction.</td>
</tr>
<tr>
<td></td>
<td>• Science is about making sense of the world around us including phenomena and design challenges.</td>
<td>Science is not framed as the memorization of facts and definitions.</td>
</tr>
<tr>
<td></td>
<td>• Student ideas and questions are surfaced and used to guide future investigations and inquiries.</td>
<td>Science is about making sense of the world around us including phenomena and design challenges.</td>
</tr>
<tr>
<td></td>
<td>• Students can tell you how what they're doing today is helping them explain a phenomenon or solve a problem.</td>
<td>Student ideas and questions are surfaced and used to guide future investigations and inquiries.</td>
</tr>
</tbody>
</table>

Adapted from Wingert, K. Classroom Culture Investigations. Presentation at CCSSO Science SCASS; Los Angeles, CA. 20 Feb 2019
Features of Classroom Culture that Support Equitable Sensemaking

<table>
<thead>
<tr>
<th>Feature</th>
<th>Your Goals & Rationale</th>
<th>Potential Strategies or Moves for Your Classroom</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Who is engaged in (or excluded from) classroom activity?</td>
<td>All students are engaged in the classroom activities.</td>
<td></td>
</tr>
<tr>
<td>2. Who is treated as a “knower” in the classroom?</td>
<td>Students see themselves, one another and the teacher as the “knowers” in the classroom.</td>
<td></td>
</tr>
<tr>
<td>3. What ways of knowing are privileged in the classroom?</td>
<td>Students and the teacher value the diverse resources one another bring to the social endeavor of science.</td>
<td></td>
</tr>
<tr>
<td>4. What science is practiced in the classroom?</td>
<td>Instruction is organized around phenomena and design challenges to surface student ideas and question to drive future instruction.</td>
<td></td>
</tr>
</tbody>
</table>

Adapted from Wingert, K. Classroom Culture Investigations. Presentation at CCSSO Science SCASS; Los Angeles, CA. 20 Feb 2019

This work is licensed under a Creative Commons Attribution 4.0 International License